Incomplete block factorization preconditioning for indefinite elliptic problems
نویسنده
چکیده
The application of the finite difference method to approximate the solution of an indefinite elliptic problem produces a linear system whose coefficient matrix is block tridiagonal and symmetric indefinite. Such a linear system can be solved efficiently by a conjugate residual method, particularly when combined with a good preconditioner. We show that specific incomplete block factorization exists for the indefinite matrix if the mesh size is reasonably small, and that this factorization can serve as an efficient preconditioner. Some efforts are made to estimate the eigenvalues of the preconditioned matrix. Numerical results are also given.
منابع مشابه
A Multilevel Dual Reordering Strategy for Robust Incomplete LU Factorization of Indefinite Matrices
A dual reordering strategy based on both threshold and graph reorderings is introduced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative scheme. The matrix is first divided into two parts according to a threshold parameter to control diagonal dominance. ...
متن کاملScallability Analysis of Parallel Mic(0) Preconditioning Algorithm for 3d Elliptic Problems
Novel parallel algorithms for the solution of large FEM linear systems arising from second order elliptic partial differential equations in 3D are presented. The problem is discretized by rotated trilinear nonconforming Rannacher–Turek finite elements. The resulting symmetric positive definite system of equations Ax = f is solved by the preconditioned conjugate gradient algorithm. The precondit...
متن کاملPreconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملComparative Analysis of High Performance Solvers for 3D Elliptic Problems
The presented comparative analysis concerns two iterative solvers for 3D linear boundary value problems of elliptic type. After applying the Finite Difference Method (FDM) or the Finite Element Method (FEM) discretization a system of linear algebraic equations has to be solved, where the stiffness matrix is large, sparse and symmetric positive definite. It is well known that the preconditioned ...
متن کاملParallel MIC(0) preconditioning of 3D elliptic problems discretized by Rannacher-Turek finite elements
Novel parallel algorithms for the solution of large FEM linear systems arising from second order elliptic partial differential equations in 3D are presented. The problem is discretized by rotated trilinear nonconforming Rannacher–Turek finite elements. The resulting symmetric positive definite system of equations Ax = f is solved by the preconditioned conjugate gradient algorithm. The precondit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 83 شماره
صفحات -
تاریخ انتشار 1999